Bacteriophage T4Bacteriophages are parasites of bacteria, and the world's most numerous  organisms. There are estimated to be 1031 phages worldwide. Compare that to  1021 stars in the universe. Phages affect us in many different ways. For example, approximately half of all bacteria are killed daily by phages.  Phages can carry virulence and antibiotic resistance genes  for pathogenic diseases,  such as cholera, diptheria and scarlet fever.  Phages can also be used therapeutically against pathogenic diseases. Many of the major discoveries of the molecular biology revolution were made possible using phages.  

Our mission is to understand bacteriophage development, life history, population dynamics and evolution. We also use phages as biological  models for pathogenic viruses. Of particular interest is exploring the process of virus emergence and developing antiviral and antibacterial  therapeutics.

Population Dynamics and Evolution of Infectious Diseases

Fifty to one hundred million people, or ~5% of the world’s population, died when the last major influenza pandemic swept the world in 1918. Since then the world’s population has increased by 4.5 billion and its connectivity prompts the term “global village”. If, in today’s world, direct contact transmitted HIV can cause ~60 million infections and ~30 million deaths, then a highly virulent airborne virus could be catastrophic. Unfortunately it is not a case of if, but when. Yet our understanding of emerging infectious diseases has only increased superficially since 1918. We still have no answers to basic questions. Why and how do viruses switch hosts? Why do some viruses, such as HIV, spread pandemically through populations whereas others, such as influenza A virus H5N1, appear briefly before petering out? How do viruses evolve in mixed host populations? These questions can be addressed using theory from evolutionary ecology. To explore emergence from an evolutionary ecological perspective, we study the dynamics of bacteriophage phi6 infection of a native host Pseudomonas phaseolicola and a novel host P. pseudoalcaligenes. The long term goal is to understand the population dynamics of viral adaptation to new host types. 

Lab Address: Biology Department, Queens College, 6530 Kissena Blvd., Flushing, NY 11358